
T H E M O S T T R U S T E D N A M E I N I N F O R M A T I O N A N D S O F T W A R E S E C U R I T Y

Security Roadmap
P O S T E R

W I N T E R 2 0 1 3 – 2 3 R D E D I T I O N

A N D

Securing Web
Application

Technologies (SWAT)
C H E C K L I S T

Version 1.0

software-security.sans.org

Ingraining security into the mind of every developer.

The SWAT Checklist provides an easy to reference set of best practices that
raise awareness and help development teams create more secure applications. It’s
a �rst step toward building a base of security knowledge around web application
security. Use this checklist to identify the minimum standard that is required to
neutralize vulnerabilities in your critical applications.

E R R O R H A N D L I N G A N D L O G G I N G
DESCRIPT IONBEST PRACTICE C W E I D

Given the languages and frameworks in use for web application
development, never allow an unhandled exception to occur. Error
handlers should be con�gured to handle unexpected errors and
gracefully return controlled output to the user.

No unhandled
exceptions

CWE-391

Your development framework or platform may generate default error
messages. These should be suppressed or replaced with customized
error messages as framework generated messages may reveal
sensitive information to the user.

Suppress framework
generated errors

Any authentication activities, whether successful or not, should be
logged.

Log all
authentication

activities

CWE-778

Any activities or occasions where the user’s privilege level changes
should be logged.

Log all privilege
changes

CWE-778

Any administrative activities on the application or any of its
components should be logged.

Log administrative
activities

CWE-778

Any access to sensitive data should be logged. This is particularly
important for corporations that have to meet regulatory requirements
like HIPAA, PCI, or SOX.

Log access to
sensitive data

CWE-778

While logging errors and auditing access is important, sensitive data
should never be logged in an unencrypted form. For example, under
HIPAA and PCI, it would be a violation to log sensitive data into the log
itself unless the log is encrypted on the disk. Additionally, it can create
a serious exposure point should the web application itself become
compromised.

Do not log
inappropriate data

CWE-532

Logs should be stored and maintained appropriately to avoid
information loss or tampering by intruder. Log retention should
also follow the rention policy set forth by the organization to meet
regulatory requirements and provide enough information for foresic
and incident response activities.

Store logs securely CWE-533

Error messages should not reveal details about the internal state of
the application. For example, �le system path and stack information
should not be exposed to the user through error messages.

CWE-209Display generic
error messages

Securing Web Application Technologies (SWAT) CHECKLIST I N P U T A N D O U T P U T H A N D L I N G
DESCRIPT IONBEST PRACTICE C W E I D

For each user input �eld, there should be validation on the input content.
Whitelisting input is the preferred approach. Only accept data that meets
a certain criteria. For input that needs more �exibility, blacklisting can also
be applied where known bad input patterns or characters are blocked.

Prefer whitelists
over blacklists

CWE-159
CWE-144

In order to prevent Cross-Site Request Forgery attacks, you must
embed a random value that is not known to third parties into the
HTML form. This CSRF protection token must be unique to each
request. This prevents a forged CSRF request from being submitted
because the attacker does not know the value of the token.

Use tokens to
prevent forged

requests

CWE-352

For every page in your application set the encoding using HTTP
headers or meta tags within HTML. This ensures that the encoding of
the page is always de�ned and that browser will not have to determine the
encoding on its own. Setting a consistent encoding, like UTF-8, for your
application reduces the overall risk of issues like Cross-Site Scripting.

Set the encoding
for your application

CWE-172

When hosting user uploaded content which can be viewed by other
users, use the X-Content-Type-Options: nosni� header so that browsers
do not try to guess the data type. Sometimes the browser can be
tricked into displaying the data type incorrectly (e.g. showing a GIF �le
as HTML). Always let the server or application determine the data type.

Use the nosni�
header for uploaded

content

CWE-430

Content Security Policy (CSP) and X-XSS-Protection headers help
defend against many common re�ected Cross-Site Scripting
(XSS) attacks.

Use Content Security
Policy (CSP) or X-XSS-
Protection headers

CWE-79
CWE-692

When accepting �le uploads from the user make sure to validate the
size of the �le, the �le type, and the �le contents as well as ensuring
that it is not possible to override the destination path for the �le.

Validate uploaded
�les

CWE-434
CWE-616
CWE-22

SQL queries should be crafted with user content passed into a bind
variable. Queries written this way are safe against SQL injection
attacks. SQL queries should not be created dynamically using string
concatenation. Similarly, the SQL query string used in a bound or
parameterized query should never be dynamically built from user input.

Use parameterized
SQL queries

CWE-89
CWE-564

EXAMPLE: Sony SQL injection Hack (http://www.infosecurity-magazine.com/view/27930/lulzsec-sony-pictures-hackers-were-school-chums)

Use the X-Frame-Options header to prevent content from being
loaded by a foreign site in a frame. This mitigates Clickjacking
attacks. For older browsers that do not support this header add
framebusting Javascript code to mitigate Clickjacking (although this
method is not foolproof and can be circumvented).

Use the X-Frame-
Options header

CAPEC-103
CWE-693

EXAMPLE: Flash camera and mic hack (http://jeremiahgrossman.blogspot.com/2008/10/clickjacking-web-pages-can-see-and-hear.html)

A C C E S S C O N T R O L

Make use of a Mandatory Access Control system. All access decisions
will be based on the principle of least privilege. If not explicitly allowed
then access should be denied. Additionally, after an account is created,
rights must be speci�cally added to that account to grant access to resources.

Apply the principle
of least privilege

CWE-272
CWE-250

Do not allow direct references to �les or parameters that can be
manipulated to grant excessive access. Access control decisions must
be based on the authenticed user identity and trusted server side
information.

Don’t use direct
object references for
access control checks

CWE-284

An unvalidated forward can allow an attacker to access private
content without authentication. Unvalidated redirects allow an
attacker to lure victims into visiting malicious sites. Prevent these
from occurring by conducting the appropriate access controls
checks before sending the user to the given location.

Don’t use
unvalidated
forwards or

redirects

CWE-601

DESCRIPT IONBEST PRACTICE C W E I D

Always apply the principle of complete mediation, forcing all requests
through a common security “gate keeper.” This ensures that access
control checks are triggered whether or not the user is authenticated.

CWE-284Apply access controls
checks consistently

D A T A P R O T E C T I O N
DESCRIPT IONBEST PRACTICE C W E I D

S E S S I O N M A N A G E M E N T
BEST PRACTICE

Session tokens must be generated by secure random functions and must
be of a su�cient length so as to withstand analysis and prediction.

CWE-6Ensure that session
identi�ers are

su�ciently random

Session tokens should be regenerated when the user authenticates to the
application and when the user privilege level changes. Additionally, should
the encryption status change, the session token should always be regenerated.

CWE-384Regenerate session
tokens

When a user is not active, the application should automatically log the
user out. Be aware that Ajax applications may make recurring calls to the
application e�ectively resetting the timeout counter automatically.

CWE-613Implement an idle
session timeout

Users should be logged out after an extensive amount of time (e.g. 4-8
hours) has passed since they logged in. This helps mitigate the risk of an
attacker using a hijacked session.

CWE-613Implement an
absolute session

timeout
Unless the application requires multiple simultaneous sessions for a single
user, implement features to detect session cloning attempts. Should any
sign of session cloning be detected, the session should be destroyed,
forcing the real user to reauthenticate.

Destroy sessions
at any sign of

tampering

The session cookie should be set with both the HttpOnly and the Secure
�ags. This ensures that the session id will not be accessible to client-side
scripts and it will only be transmitted over SSL, respectively.

CWE-79
CWE-614

Use secure cookie
attributes

(i.e. HttpOnly and
Secure �ags)

When the user logs out of the application the session and corresponding
data on the server must be destroyed. This ensures that the session can not
be accidentially revived.

CWE-613Invalidate the
session after logout

The cookie domain and path scope should be set to the most restrictive
settings for your application. Any wildcard domain scoped cookie must
have a good justi�cation for its existence.

Set the cookie
domain and path

correctly

The logout button or logout link should be easily accessible to the user on
every page after they have authenticated.

Place a logout button
on every page

The session cookie should have a reasonable expiration time. Non-expiring
session cookies should be avoided.

Set the cookie
expiration time

DESCRIPT ION C W E I D

For all pages requiring protection by SSL, the same URL should not be
accessible via the non-SSL channel.

CWE-319Disable HTTP access
for all SSL

enabled resources

The Strict-Transport-Security header ensures that the browser does not
talk to the server over non-SSL. This helps reduce the risk of SSL stripping
attacks as implemented by the sslsni� tool.

Use the Strict-
Transport-Security

header

If encryption keys are exchanged or pre-set in your application then any
key establishment or exchange must be performed over a secure channel.

Securely exchange
encryption keys

When keys are stored in your system they must be properly secured and
only accessible to the appropriate sta� on a need to know basis.

CWE-320Set up secure key
management

processes

Weak SSL ciphers must be disabled on all servers. For example, SSL v2 has
known weaknesses and is not considered to be secure. Additionally, some
ciphers are cryptographically weak and should be disabled.

Disable weak
SSL ciphers
on servers

Conduct an evaluation to ensure that sensitive data is not being
unnecessarily transported or stored. Where possible, use tokenization to
reduce data exposure risks.

Limit the use
and storage of
sensitive data

Browser data caching should be disabled using the cache control HTTP
headers or meta tags within the HTML page. Additionally, sensitive input
�elds, such as the login form, should have the autocomplete=o� setting in
the HTML form to instruct the browser not to cache the credentials.

CWE-524Disable data
caching using cache
control headers and

autocomplete

Ideally, SSL should be used for your entire application. If you have to limit
where it’s used then SSL must be applied to any authentication pages as
well as all pages after the user is authenticated. If sensitive information
(e.g. personal information) can be submitted before authentication those
features must also be sent over SSL.

CWE-311
CWE-319
CWE-523

Use SSL
everywhere

EXAMPLE: Firesheep

User passwords must be stored using secure hashing techniques with a
strong algorithm like SHA-256. Simply hashing the password a single time
does not su�ciently protect the password. Use iterative hashing with a
random salt to make the hash strong.

CWE-257Store user
passwords using a
strong, iterative,

salted hash EXAMPLE: LinkedIn password leak

SSL certi�cates should be signed by a reputable certi�cate authority.
The name on the certi�cate should match the FQDN of the website. The
certi�cate itself should be valid and not expired.

Use valid SSL
certi�cates from a

reputable CA
EXAMPLE: CA Compromise (http://en.wikipedia.org/wiki/DigiNotar)

A U T H E N T I C A T I O N
BEST PRACTICE

Never allow credentials to be stored directly within the application code.
While it can be convenient to test application code with hardcoded
credentials during development this signi�cantly increases risk and should
be avoided.

CWE-798Don’t hardcode
credentials

EXAMPLE: Hard coded passwords in networking devices https://www.us-cert.gov/control_systems/pdf/ICSA-12-243-01.pdf

DESCRIPT ION C W E I D

Password reset systems are often the weakest link in an application. These
systems are often based on the user answering personal questions to
establish their identity and in turn resetthe password. The system needs
to be based on questions that are both hard to guess and brute force.
Additionally, any password reset option must not reveal whether or not an
account is valid, preventing username harvesting.

CWE-640Develop a strong
password reset

system

EXAMPLE: Sara Palin password hack (http://en.wikipedia.org/wiki/Sarah_Palin_email_hack)

Account lockout needs to be implemented to guard against brute forcing
attacks against both the authentication and password reset functionality.
After serveral tries on a speci�c user account, the account should be locked for
a period of time or until manually unlocked. Additionally, it is best to continue
the same failure message indicating that the credentials are incorrect or the
account is locked to prevent an attacker from harvesting usernames.

CWE-307Implement account
lockout against

brute force attacks

Messages for authentication errors must be clear and, at the same time,
be written so that sensitive information about the system is not disclosed.
For example, error messages which reveal that the userid is valid but that
the corresponsing password is incorrect con�rms to an attacker that the
account does exist on the system.

Don’t disclose too
much information
in error messages

Modern web applications usually consist of multiple layers. The business
logic tier (processing of information) often connects to the data tier
(database). Connecting to the database, of course, requires authentication.
The authentication credentials in the business logic tier must be stored in a
centralized location that is locked down. Scattering credentials throughout
the source code is not acceptable. Some development frameworks
provide a centralized secure location for storing credentials to the backend
database. These encrypted stores should be leveraged when possible.

CWE-257Store database
credentials securely

If an application becomes compromised it is important that the
application itself and any middleware services be con�gured to run with
minimal privileges. For instance, while the application layer or business
layer needs the ability to read and write data to the underlying database,
administrative credentials that grant access to other databases or tables
should not be provided.

CWE-250Applications and
Middleware should
run with minimal

privileges

A password policy should be created and implemented so that passwords
meet speci�c strength criteria.

CWE-521Implement a strong
password policy

EXAMPLE: http://www.pcworld.com/article/128823/study_weak_passwords_really_do_help_hackers.html

C O N F I G U R AT I O N A N D O P E R AT I O N S

A rigorous change management process must be maintained during
operations. For example, new releases should only be deployed after
proper testing and associated documentation has been completed.

CWE-439Establish a rigorous
change management

process
EXAMPLE: RBS production outage (http://www.computing.co.uk/ctg/analysis/2186972/rbs-wrong-rbs-manager)

Engage the business owner to de�ne security requirements for the application.
This includes items that range from the whitelist validation rules all the way to
nonfunctional requirements like the performance of the login function. De�ning
these requirements up front ensures that security is baked into the system.

De�ne security
requirements

Integrating security into the design phase saves money and time. Conduct
a risk review with security professionals and threat model the application
to identify key risks. The helps you integrate appropriate countermeasures
into the design and architecture of the application.

CWE-701
CWE-656

Conduct a
design review

Security focused code reviews can be one of the most e�ective ways to
�nd security bugs. Regularly review your code looking for common issues
like SQL Injection and Cross-Site Scripting.

CWE-702Perform code
reviews

An incident handling plan should be drafted and tested on a regular basis.
The contact list of people to involve in a security incident related to the
application should be well de�ned and kept up to date.

De�ne an incident
handling plan

All components of infrastructure that support the application should be
con�gured according to security best practices and hardening guidelines. In
a typical web application this can include routers, �rewalls, network switches, operating
systems, web servers, application servers, databases, and application frameworks.

CWE-15
CWE-656

Harden the
infrastructure

Training helps de�ne a common language that the team can use to improve
the security of the application. Education should not be con�ned solely to
software developers, testers, and architects. Anyone associated with the
development process, such as business analysts and project managers, should
all have periodic software security awareness training.

Educate the team
on security

Conduct security testing both during and after development to ensure the
application meets security standards. Testing should also be conducted after major
releases to ensure vulnerabilities did not get introduced during the update process.

Perform security
testing

DESCRIPT IONBEST PRACTICE C W E I D

For all pages requiring protection by SSL, the same URL should not be
accessible via the non-SSL channel.

CWE

The Strict-Transport-Security header ensures that the browser does not
talk to the server over non-SSL. This helps reduce the risk of SSL stripping
attacks as implemented by the sslsni� tool.

If encryption keys are exchanged or pre-set in your application then any
key establishment or exchange must be performed over a secure channel.

When keys are stored in your system they must be properly secured and
only accessible to the appropriate sta� on a need to know basis.

Weak SSL ciphers must be disabled on all servers. For example, SSL v2 has
known weaknesses and is not considered to be secure. Additionally, some
ciphers are cryptographically weak and should be disabled.

E M E N

Session tokens must be generated by secure random functions and must
be of a su�cient length so as to withstand analysis and prediction.

Session tokens should be regenerated when the user authenticates to the
application and when the user privilege level changes. Additionally, should
the encryption status change, the session token should always be regenerated.

When a user is not active, the application should automatically log the
user out. Be aware that Ajax applications may make recurring calls to the
application e�ectively resetting the timeout counter automatically.

Users should be logged out after an extensive amount of time (e.g. 4-8
hours) has passed since they logged in. This helps mitigate the risk of an

Unless the application requires multiple simultaneous sessions for a single
user, implement features to detect session cloning attempts. Should any
sign of session cloning be detected, the session should be destroyed,

The session cookie should be set with both the HttpOnly and the Secure
�ags. This ensures that the session id will not be accessible to client-side
scripts and it will only be transmitted over SSL, respectively.

When the user logs out of the application the session and corresponding
data on the server must be destroyed. This ensures that the session can not

The logout button or logout link should be easily accessible to the user on

Limit the use
and storage of
sensitive data

Browser data caching should be disabled using the cache control HTTP
headers or meta tags within the HTML page. Additionally, sensitive input
�elds, such as the login form, should have the autocomplete=o� setting in
the HTML form to instruct the browser not to cache the credentials.

isable data
caching using cache
control headers and

autocomplete

well as all pages after the user is authenticated. If sensitive information
(e.g. personal information) can be submitted before authentication those

CWE-319
CWE-523

User passwords must be stored using secure hashing techniques with a
strong algorithm like SHA-256. Simply hashing the password a single time
does not su�ciently protect the password. Use iterative hashing with a
random salt to make the hash strong.

EXAMPLE

SSL certi�cates should be signed by a reputable certi�cate authority.
The name on the certi�cate should match the FQDN of the website. The
certi�cate itself should be valid and not expired.

EXAMPLE: CA Compromise (

be avoided.

credentials

EXAMPLE: Hard coded passwords in networking devices

Password reset systems are often the weakest link in an application. These
systems are often based on the user answering personal questions to
establish their identity and in turn resetthe password. The system needs
to be based on questions that are both hard to guess and brute force.
Additionally, any password reset option must not reveal whether or not an
account is valid, preventing username harvesting.

Develop a strong
password reset

http://en.wikipedia.org/wiki/Sarah_Palin_email_hack

Account lockout needs to be implemented to guard against brute forcing
attacks against both the authentication and password reset functionality.
After serveral tries on a speci�c user account, the account should be locked for
a period of time or until manually unlocked. Additionally, it is best to continue
the same failure message indicating that the credentials are incorrect or the
account is locked to prevent an attacker from harvesting usernames.

Messages for authentication errors must be clear and, at the same time,
be written so that sensitive information about the system is not disclosed.
For example, error messages which reveal that the userid is valid but that
the corresponsing password is incorrect con�rms to an attacker that the

Modern web applications usually consist of multiple layers. The business
logic tier (processing of information) often connects to the data tier
(database). Connecting to the database, of course, requires authentication.
The authentication credentials in the business logic tier must be stored in a
centralized location that is locked down. Scattering credentials throughout
the source code is not acceptable. Some development frameworks
provide a centralized secure location for storing credentials to the backend
database. These encrypted stores should be leveraged when possible.

If an application becomes compromised it is important that the
application itself and any middleware services be con�gured to run with
minimal privileges. For instance, while the application layer or business
layer needs the ability to read and write data to the underlying database,
administrative credentials that grant access to other databases or tables

A password policy should be created and implemented so that passwords

http://www.pcworld.com/article/128823/study_weak_passwords_really_do_help_hackers.html

N F I G U R A

A rigorous change management process must be maintained during
operations. For example, new releases should only be deployed after
proper testing and associated documentation has been completed.

stablish a rigorous
change management

RBS production outage (

Engage the business owner to de�ne security requirements for the application.
This includes items that range from the whitelist validation rules all the way to
nonfunctional requirements like the performance of the login function. De�ning
these requirements up front ensures that security is baked into the system.

Integrating security into the design phase saves money and time. Conduct
a risk review with security professionals and threat model the application
to identify key risks. The helps you integrate appropriate countermeasures
into the design and architecture of the application.

Security focused code reviews can be one of the most e�ective ways to
�nd security bugs. Regularly review your code looking for common issues
like SQL Injection and Cross-Site Scripting.

An incident handling plan should be drafted and tested on a regular basis.
The contact list of people to involve in a security incident related to the

All components of infrastructure that support the application should be
con�gured according to security best practices and hardening guidelines.
a typical web application this can include routers, �rewalls, network switches, operating
systems, web servers, application servers, databases, and application frameworks.

Training helps de�ne a common language that the team can use to improve
the security of the application. Education should not be con�ned solely to
software developers, testers, and architects. Anyone associated with the
development process, such as business analysts and project managers, should

Conduct security testing both during and after development to ensure the
application meets security standards. Testing should also be conducted after major
releases to ensure vulnerabilities did not get introduced during the update process.

T ICE

S O F T W A R E S E C U R I T Y C U R R I C U L U M

The SWAT Checklist provides an easy to reference set of best practices that
raise awareness and help development teams create more secure applications. It’s

CWE-209

All output functions must contextually encode data before sending
it to the user. Depending on where the output will end up in the
HTML page, the output must be encoded di�erently. For example,
data placed in the URL context must be encoded di�erently than data
placed in JavaScript context within the HTML page.

Conduct contextual
output encoding

CWE-79

EXAMPLE: Resource: https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

The source of the input must be validated. For example, if input is
expected from a POST request do not accept the input variable from a
GET request.

CWE-20
CWE-346

Validate the
source of input

Defense

Additional Software Security Courses http://software-security.sans.org

Secure Coding

JAVA .NET
DEV541

Secure Coding
in Java/JEE

(4-Day Course)
GSSP-JAVA

DEV544
Secure Coding

in .NET
(4-Day Course)

GSSP-.NET

C & C++
DEV543

Secure Coding
in C & C++

Language Agnostic
DEV536

Secure Coding:
Developing

Defensible Apps

Attack
SEC542

Web App Pen Testing
and Ethical Hacking

GWAPT

SEC642
Advanced Web App

Pen Testing and
Ethical Hacking

Securing the App (STA)
Application Security

Awareness

SEC642
Advanced Web App

New!
DEV522

Defending Web Applications
Security Essentials

GWEB

11 Modules – 10 minutes each
providing awareness-level

training for people involved in
application development.

• Application Security training for
development teams

• Duration = 2 hours
• Delivered = Computer-Based

Training (CBT)
• Quizzes included

www.securingtheapp.org

www.coresecurity.com

WHITEPAPER TITLE

“Becoming the APT”
http://coresecurity.com/files/attachments/

Becoming-the-APT-Rebranded-Final.pdf

Website: http://software-security.sans.org
Free resources, white papers, webcasts, and more

Blog: http://software-security.sans.org/blog

Twitter: @sansappsec
Latest news, promos, and other information

Secure Coding Assessment:
http://software-security.sans.org/courses/assessmentCourses being offered: SEC542 • DEV522 • DEV541 • DEV544 • DEV536

AppSec 2013
S U M M I T

April 22-27, 2013 | Austin, Texas
www.sans.org/event/appsec-2013

AppSec

